情歌无味 4星
共回答了476个问题采纳率:99.5% 评论
九年级因式分解常见的方法和技巧如下:
1. 公因式提取法:在多项式的各项中,找出它们所具有的共同因式,将这些公因式提取出来,使多项式可以化简成各项都包含该公因式的积的形式,进而进行因式分解。
2. 公式法:九年级的数学课本中会给出一些基本的代数公式,如平方差公式、配方法、立方差公式等。利用这些公式,可以快速地将多项式分解成较为容易处理的形式,然后进行进一步操作。
3. 分组法:通过技巧性地将多项式中各项重新分组,并利用因式分解的基本规律,最终将多项式分解出它的因式。
4. 试除法、辗转相除法:当多项式较为复杂、无法直接进行公因式提取时,可以考虑采用试除法或辗转相除法等方法,通过找出多项式的因式,从而达到将多项式进行因式分解的目的。
总之,九年级因式分解的方法和技巧需要不断练习和总结,希望上述内容对您有所帮助。
11小时前
忧心闲人 1星
共回答了116个问题 评论
一、因式分解方法分类
(1)提公因式法
几个多项式的各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。
口诀:找准公因式,一次要提净;全家都搬走,留1把家守。要变号,变形看正负。
例如:
-am+bm+cm=-m(a-b-c);
a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。
注意:把2a2+1/2变成2(a2+1/4)不叫提公因式
(2)公式法
如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。
平方差公式:a2-b2=(a+b)(a-b);
完全平方公式:a2±2ab+b2=(a±b)2;
注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
立方和公式:a3+b3=(a+b)(a2-ab+b2);
立方差公式:a3-b3=(a-b)(a2+ab+b2);
完全立方公式:a3±3a2b+3ab2±b3=(a±b)3.
其他公式:(1)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
例如:a2+4ab+4b2=(a+2b)2。
(3)待定系数法
例如,将ax2+bx+c(a,b,c是常数,ab≠0)因式分解,可令ax2+bx+c=0,再解这个方程。如果方程无解,则原式无法因式分解;如果方程有两个相同的实数根(设为m),则原式可以分解为(x-m)2如果方程有两个不相等的实数根(分别设为m,n),则原式可以分解为(x-m)(x-n)。
更高次数的多项式亦可。
例:分解因式x2+3x-4。
答:设x2+3x-4=0
解方程得:x1=1 x2=-4
∴x2+3x-4因式分解为(x-1)(x+4)
(4)十字相乘法(数学术语)
十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
十字分解法能把某些二次三项式分解因式。对于形如ax²+bx+c=(a₁x+c₁)(a₂x+c₂)的整式来说,方法的关键是把二次项系数a分解成两个因数a₁,a₂的积a₁·a₂,把常数项c分解成两个因数c₁,c₂的积c₁·c₂,并使a₁c₂+a₂c₁正好等于一次项的系数b,那么可以直接写成结果:ax²+bx+c=(a₁x+c₁)(a₂x+c₂)。在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
9小时前
猜你喜欢的问题
5个月前1个回答
5个月前1个回答
5个月前1个回答
5个月前2个回答
5个月前1个回答
5个月前2个回答
热门问题推荐
4个月前1个回答
1个月前1个回答
4个月前1个回答
3个月前1个回答
4个月前4个回答
2个月前1个回答
3个月前1个回答
4个月前1个回答
2个月前1个回答