愛妳成瘾 2星
共回答了274个问题 评论
1、牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。
2、牛顿-莱布尼茨公式是积分学理论的主干,利用牛顿一莱布尼茨公式可以证明定积分换元公式,积分第一中值定理和积分型余项的泰勒公式。牛顿-莱布尼茨公式还可以推广到二重积分与曲线积分,从一维推广到多维。
牛顿-莱布尼茨公式的用法:
1、牛顿-莱布尼茨公式在物理学上也有广泛的应用,计算运动物体的路程,计算变力沿直线所做的功以及物体之间的万有引力。
2、牛顿-莱布尼茨公式促进了其他数学分支的发展,该公式在微分方程,傅里叶变换,概率论,复变函数等数学分支中都有体现。
扩展资料:
1、牛顿-莱布尼茨公式的内容是一个连续函数在区间[a,b]上的定积分等于它的任意一个原函数在区间[a,b]上的增量。牛顿在1666年写的《流数简论》中利用运动学描述了这一公式,1677年,莱布尼茨在一篇手稿中正式提出了这一公式。因为二者最早发现了这一公式,于是命名为牛顿-莱布尼茨公式。
2、牛顿-莱布尼茨公式,表明某函数的定积分可以用该函数的任意一个反导函数来计算。这一部分是微积分或数学分析中相当关键且应用很广的一个定理,因为它大大简化了定积分的计算。
13小时前
猜你喜欢的问题
5个月前1个回答
5个月前1个回答
5个月前1个回答
5个月前2个回答
5个月前1个回答
5个月前2个回答
热门问题推荐
3个月前1个回答
1个月前2个回答
2个月前2个回答
1个月前1个回答
3个月前4个回答
3个月前1个回答
3个月前6个回答
2个月前1个回答
1个月前1个回答