四棱锥外接球半径万能公式

随风流浪 3个月前 已收到1个回答 举报

不懂你的心 2星

共回答了29个问题采纳率:92.2% 评论

首先要知道球心在正四棱锥的高上,

然后考察正四棱锥的高与底面一顶点构成的三角形,在高上找一点,使该点到正四棱锥的顶点与底面一顶点的距离相等,该点就是球心.

设正四棱锥的顶点为P,底面一顶点为A,底面中心为O,又设PA=m,PO=h,底边长为a,则OA=√2a/2,m^2=h^2+(1/2)a^2在△PAO中,作PA的中垂线交PO于I点,该点即为球心I,设PI=r,则r=(1/2)m÷cos∠APO,而cos∠APO=h/m,所以球半径为r=m^2/2h=(h^2+(1/2)a^2)/2h.

21小时前

39
可能相似的问题

猜你喜欢的问题

热门问题推荐

Copyright © 2024 微短问答 All rights reserved. 粤ICP备2021119249号 站务邮箱 959505@qq.com