不留回忆 5星
共回答了57个问题采纳率:92.9% 评论
函数连续性“有定义”,“有定义”是在某点或者某区间有意义,
举例说明:函数y=2x+3在定义域R上是连续的,假设定义域是(-∞,0)U(0,+∞)在R上不连续,因为在0处无定义。
对于连续性,在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的。这种现象在函数关系上的反映,就是函数的连续性。
在函数极限的定义中曾经强调过,当x→x0时f(x)有没有极限,与f(x)在点x0处是否有定义并无关系。但由于函数在x0处连续,则表示f(x0)必定存在,显然当Δx=0(即x=x0)时Δy=0<ε。于是上述推导过程中可以取消0<|Δx|这个条件。
[a,b]上存在一个点x0,使得对任意x∈[a,b],都有f(x)≤f(x0),则称f(x0)为f(x)在[a,b]上的最大值。最小值可以同样作定义,只需把上面的不等号反向即可
21小时前
猜你喜欢的问题
5个月前1个回答
5个月前1个回答
5个月前1个回答
5个月前2个回答
5个月前1个回答
5个月前2个回答
热门问题推荐
1个月前1个回答
1个月前6个回答
3个月前1个回答
1个月前1个回答
2个月前7个回答
1个月前1个回答
1个月前4个回答
1个月前2个回答
1个月前4个回答