数学归纳法的基本内容

栾剑听雨阁 4个月前 已收到1个回答 举报

情场失败 3星

共回答了379个问题采纳率:94.9% 评论

数学归纳法(簡稱:MI)是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立。除了自然数以外,广义上的数学归纳法也可以用于证明一般良基关系结构,例如:集合论中的树(集合论)。这种广义的数学归纳法应用于数学逻辑和计算机科学领域,称作结构归纳法。

  需要留意的是,数学归纳法虽然名字中有“归纳”,但是实际上数学归纳法并不属于不严谨性(数学)的归纳法,实际上是属于完全严谨的演绎推理法。

  最简单和常见的数学归纳法是证明当n等于任意一个自然数时某命题成立。证明分下面两步:

证明当n=0时命题成立。

证明如果在n=m时命题成立,那么可以推导出在n=m+1时命题也成立。(m代表任意自然数)

  这种方法的原理在于:首先证明在某个起点值时命题成立,然后证明从一个值到下一个值的过程有效。当这两点都已经证明,那么任意值都可以通过反复使用这个方法推导出来。把这个方法想成多米诺效应也许更容易理解一些。例如:你有一列很长的直立着的多米诺骨牌,如果你可以:

证明第一张骨牌会倒。

证明只要任意一张骨牌倒了,那么与其相邻的下一张骨牌也会倒。

  那么便可以下结论:所有的骨牌都会倒。

数学归纳法的应用步骤

  用数学归纳法证题要恰当运用分析法,主要有如下三个步骤:

  ①归纳基础:证n取第一个值时命题成立。

  ②证传递性:由成立证明时命题成立。

  ③得出结论:综合,时命题成立。

22小时前

28
可能相似的问题

猜你喜欢的问题

热门问题推荐

Copyright © 2024 微短问答 All rights reserved. 粤ICP备2021119249号 站务邮箱 959505@qq.com