对数均值不等式条件

儍尛靜 3年前 已收到1个回答 举报

緊握倖鍢 1星

共回答了146个问题采纳率:93.8% 评论

均值不等式的使用条件:

一正:数字首先要都大于零,两数为正

二定:数字之间通过加或乘可以有定值出现,乘积为定值——可以不是具体的数字,但在题目中必须是不变的量;

三相等:检验等号是不是取得到,当且仅当两数相等才有不等式的等号成立,一般第三步很容易被忽略,因此这也是均值不等式的易错点之一。

用均值不等式求函数的最值,在具体求解时,应注意考查下列三个条件:

1、函数的解析式中,各项均为正数;

2、函数的解析式中,含变数的各项的和或积必须有一个为定值;

3、函数的解析式中,含变数的各项均相等,取得最值扩展资料:均值不等式的常见公式:a^2+b^2 ≥ 2ab√(ab)≤(a+b)/2 ≤(a^2+b^2)/2a^2+b^2+c^2≥(a+b+c)^2/3≥ab+bc+ac

a+b+c≥3×三次根号abc均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。

公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。

均值不等式的四大证明方法:

1、直接归纳法

2、取对数证明法

3、排序不等式法

4、最后一个证明法

9小时前

9
可能相似的问题

猜你喜欢的问题

热门问题推荐

Copyright © 2024 微短问答 All rights reserved. 粤ICP备2021119249号 站务邮箱 959505@qq.com