緊握倖鍢 1星
共回答了146个问题采纳率:93.8% 评论
均值不等式的使用条件:
一正:数字首先要都大于零,两数为正
二定:数字之间通过加或乘可以有定值出现,乘积为定值——可以不是具体的数字,但在题目中必须是不变的量;
三相等:检验等号是不是取得到,当且仅当两数相等才有不等式的等号成立,一般第三步很容易被忽略,因此这也是均值不等式的易错点之一。
用均值不等式求函数的最值,在具体求解时,应注意考查下列三个条件:
1、函数的解析式中,各项均为正数;
2、函数的解析式中,含变数的各项的和或积必须有一个为定值;
3、函数的解析式中,含变数的各项均相等,取得最值扩展资料:均值不等式的常见公式:a^2+b^2 ≥ 2ab√(ab)≤(a+b)/2 ≤(a^2+b^2)/2a^2+b^2+c^2≥(a+b+c)^2/3≥ab+bc+ac
a+b+c≥3×三次根号abc均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。
公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。
均值不等式的四大证明方法:
1、直接归纳法
2、取对数证明法
3、排序不等式法
4、最后一个证明法
9小时前
猜你喜欢的问题
5个月前1个回答
5个月前1个回答
5个月前1个回答
5个月前2个回答
5个月前1个回答
5个月前2个回答
热门问题推荐
3年前1个回答
2个月前1个回答
3个月前1个回答
1个月前1个回答
1个月前1个回答
1个月前1个回答
3个月前1个回答
2个月前2个回答
1个月前1个回答