梦瞬间崩溃 3星
共回答了394个问题采纳率:93.8% 评论
闭区间套定理:设闭区间{[an,bn]}满足:[an,bn]?[an+1,bn+1](n∈N+),limn→∞(bn?an)=0,则存在唯一的ξ,使ξ∈[an,bn](n∈N+)且limn→∞an=limn→∞bn=ξ.设f是[a,b]上的连续函数,下面用反证法证明f在[a,b]有界.反设f在[a,b]无界,二等分区间[a,b],则存在一子区间[a1,b1],使f在[a1,b1]无界,再二等分[a1,b1],则同样可以得到一个子区间[a2,b2],使f在[a2,b2]上无界,如此无限下去得到一闭区间套{[an,bn]},f在任意[an,bn]无界.显然,bn?an=b?a2n→0(n→∞),由闭区间套定理可以推知ξ∈[an,bn](n∈N+).由f在ξ的连续性知:存在δ>0,使f在[a,b]∩[U(ξ,δ)]有界,而n充分大时,[an,bn]?U(ξ,δ),这与f在[an,bn]上无界矛盾.
22小时前
猜你喜欢的问题
5个月前1个回答
5个月前1个回答
5个月前1个回答
5个月前2个回答
5个月前1个回答
5个月前2个回答
热门问题推荐
1个月前1个回答
3个月前1个回答
3个月前1个回答
3个月前5个回答
1个月前1个回答
2个月前1个回答
2个月前6个回答
3个月前1个回答
2个月前1个回答