马大饼 2星
共回答了268个问题采纳率:99.8% 评论
圆锥曲线上任意一点M与圆锥曲线焦点的连线段,叫做圆锥曲线焦半径。
圆锥曲线上一点到焦点的距离,不是定值。
椭圆的焦半径是左加,右减;下加,上减。双曲线的焦半径是左加套绝对值,右减套绝对值;下加套绝对值,上减套绝对值。
椭圆
设M(x0,y0)是椭圆x2/a2+ y2/b2=1(a>b>0)的一点,r1和r2分别是点M与点F1(-c,0),F2(c,0)的距离,那么(左焦半径)r1=a+ex0,(右焦半径)r2=a -ex0,其中e是离心率。 推导:r1/∣MN1∣= r2/∣MN2∣=e 可得:r1= e∣MN1∣= e(a^2/ c+x0)= a+ex0,r2= e∣MN2∣= e(a^2/ c-x0)= a-ex0。 同理:∣MF1∣= a+ey0,∣MF2∣= a-ey0。
2小时前
猜你喜欢的问题
5个月前1个回答
5个月前1个回答
5个月前1个回答
5个月前2个回答
5个月前1个回答
5个月前2个回答
热门问题推荐
1个月前3个回答
1个月前1个回答
1个月前2个回答
3个月前2个回答
2个月前3个回答
1个月前2个回答
2个月前1个回答
3个月前1个回答
1个月前1个回答