等量无穷小的代换公式

婲癡占線 1个月前 已收到3个回答 举报

阡陌花嘅 4星

共回答了408个问题采纳率:92.7% 评论

若两个无穷小之比的极限为1,则等价无穷小代换常用公式:arcsinx ~ x;tanx ~ x;e^x-1 ~ x;ln(x+1) ~ x;arctanx ~ x;1-cosx ~ (x^2)/2;tanx-sinx ~ (x^3)/2;(1+bx)^a-1 ~ abx;

扩展资料:等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。一般情况下,使用等价无穷小的条件:1、被代换的量,在取极限的时候极限值为0;2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

17小时前

10

普照月光下 2星

共回答了67个问题 评论

当x→0,且x≠0,则 x~sinx~tanx~arcsinx~arctanx; x~ln(1+x)~(e^x-1); (1-cosx)~x*x/2; [(1+x)^n-1]~nx; loga(1+x)~x/lna;a的x次方~xlna;(1+x)的1/n次方~1/nx(n为正整数);注:^ 是乘方,~是等价于,

在和式中不能使用等价无穷小代换。

  

整个和式xlne - x^2ln(1+1/x)是一个“∞-∞”的形式,所以不能单独计算任意一个极限。从整体上来看,xlne - x^2ln(1+1/x)=x^2×[1/x - ln(1+1/x)],是“∞*0”的结构,把x^2放到分母上的话,为“0/0”型,可用洛必达法则(这里把1/x换元再求导会简单许多,另外用泰勒公式也可计算)

当x→0,且x≠0,则 x~sinx~tanx~arcsinx~arctanx; x~ln(1+x)~(e^x-1); (1-cosx)~x*x/2; [(1+x)^n-1]~nx; loga(1+x)~x/lna;a的x次方~xlna;(1+x)的1/n次方~1/nx(n为正整数);注:^ 是乘方,~是等价于。

15小时前

14

鈅半弯 4星

共回答了492个问题 评论

当x→0时,等价/量无穷小代换公式sinx、tanx、arcsinx、arctanx、e的x次方-1、In(1+x)

12小时前

49
可能相似的问题

猜你喜欢的问题

热门问题推荐

Copyright © 2024 微短问答 All rights reserved. 粤ICP备2021119249号 站务邮箱 959505@qq.com