阡陌花嘅 4星
共回答了408个问题采纳率:92.7% 评论
若两个无穷小之比的极限为1,则等价无穷小代换常用公式:arcsinx ~ x;tanx ~ x;e^x-1 ~ x;ln(x+1) ~ x;arctanx ~ x;1-cosx ~ (x^2)/2;tanx-sinx ~ (x^3)/2;(1+bx)^a-1 ~ abx;
扩展资料:等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。一般情况下,使用等价无穷小的条件:1、被代换的量,在取极限的时候极限值为0;2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
17小时前
普照月光下 2星
共回答了67个问题 评论
当x→0,且x≠0,则 x~sinx~tanx~arcsinx~arctanx; x~ln(1+x)~(e^x-1); (1-cosx)~x*x/2; [(1+x)^n-1]~nx; loga(1+x)~x/lna;a的x次方~xlna;(1+x)的1/n次方~1/nx(n为正整数);注:^ 是乘方,~是等价于,
在和式中不能使用等价无穷小代换。
整个和式xlne - x^2ln(1+1/x)是一个“∞-∞”的形式,所以不能单独计算任意一个极限。从整体上来看,xlne - x^2ln(1+1/x)=x^2×[1/x - ln(1+1/x)],是“∞*0”的结构,把x^2放到分母上的话,为“0/0”型,可用洛必达法则(这里把1/x换元再求导会简单许多,另外用泰勒公式也可计算)
当x→0,且x≠0,则 x~sinx~tanx~arcsinx~arctanx; x~ln(1+x)~(e^x-1); (1-cosx)~x*x/2; [(1+x)^n-1]~nx; loga(1+x)~x/lna;a的x次方~xlna;(1+x)的1/n次方~1/nx(n为正整数);注:^ 是乘方,~是等价于。
15小时前
猜你喜欢的问题
5个月前1个回答
5个月前1个回答
5个月前1个回答
5个月前2个回答
5个月前1个回答
5个月前2个回答
热门问题推荐
1个月前6个回答
3个月前2个回答
2个月前1个回答
3年前1个回答
3个月前3个回答
2个月前2个回答
1个月前1个回答
1个月前4个回答
4个月前2个回答