似风又热忱 2星
共回答了285个问题采纳率:97.7% 评论
①左右导数存在且相等是可导的充分必要条件。②可导必定连续。③连续不一定可导。
导数存在的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导 扩展资料
一个函数在某点连续,表明它在该点左右极限相等且等于该点的函数值.对导函数来说,导函数连续意味着f'(x)在x0的'左右极限相等且等于f'(x0)。
f'(x)在x0的左右极限,是对f'(x)的函数表达式取正向负向趋近x0,而原函数的左右导数是按定义对x0处去极限.在x0点处。 f'(x0)=左导数=右导数,说明f(x)在x=0点左连续和右连续,并不能说明f(x)的导函数在x=0点左极限=右极限=这点函数值。
21小时前
猜你喜欢的问题
5个月前1个回答
5个月前1个回答
5个月前1个回答
5个月前2个回答
5个月前1个回答
5个月前2个回答
热门问题推荐
1个月前1个回答
1个月前1个回答
3个月前1个回答
1个月前1个回答
1个月前1个回答
4个月前1个回答
3个月前2个回答
1个月前2个回答
3个月前1个回答