弦长公式函数化简公式

外表的甜蜜 1个月前 已收到3个回答 举报

不虚伪 1星

共回答了151个问题采纳率:93.7% 评论

弦长=2Rsina,R是半径,a是圆心角;弦长为连接圆上任意两点的线段的长度。弦长公式,在这里指直线与圆锥曲线相交所得弦长的公式。圆锥曲线, 是数学、几何学中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的一些曲线,如:椭圆,双曲线,抛物线等。

  在三角形ABC中,它的外接圆半径为R,则正弦定理可表述为:

  a/sinA=b/sinB=c/sinC=2R,即a=2RsinA,b=2RsinB,c=2RsinC;

  (x-4)^2+y^2=16被直线y=(根号3)x所截得弦长

  圆(x-4)^2+y^2=16与直线y=(根号3)x的一个交点恰为原点O(0,0),另一个交点记为A,则OA就是圆(x-4)^2+y^2=16被直线y=(根号3)x所截得的弦,若记圆与x轴的另一个交点为B,则三角形OAB就是一个直角三角形,其中∠AOB=60°,∠OAB=90°,OB=2R,所以

  OA=2Rcos∠AOB=2Rcos60°=R。

  又圆的半径为4,所以圆(x-4)^2+y^2=16被直线y=(根号3)x所截得的弦长为4。

11小时前

50

弃你过去 2星

共回答了27个问题 评论

圆的弦长公式是:

1、弦长=2Rsina

R是半径,a是圆心角。

2、弧长L,半径R。

弦长=2Rsin(L*180/πR)

直线与圆锥曲线相交所得弦长d的公式。

弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1]

其中k为直线斜率,(x1,y1),(x2,y2)为直线与曲线的两交点,"││"为绝对值符号,"√"为根号。

关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标。

利用韦达定理及弦长公式求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。

9小时前

1

无奈蔠點 2星

共回答了262个问题 评论

弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1]   其中k为直线斜率,(x1,y1),(x2,y2)为直线与曲线的两交点,"││"为绝对值符号,"√"为根号   证明方法如下:  假设直线为:Y=kx+b   圆的方程为:(x-a)^2+(y-u)^2=r^2   假设相交弦为AB,点A为(x1.y1)点B为(X2.Y2)   则有AB=√(x1-x2)^2+(y1-y2)^   把y1=kx1+b.  y2=kx2+b分别带入,  则有:  AB=√(x1-x2)^2+(kx1-kx2)^2   =√(x1-x2)^2+k^2(x1-x2)^2   =√1+k^2*│x1-x2│   证明ABy1-y2│√[(1/k^2)+1]   的方法也是一样的   证明方法二   d=√(x1-x2}^2+(y1-y2)^2   这是两点间距离公式   因为直线   y=kx+b   所以y1-y2=kx1+b-(kx2+b)=k(x1-x2)   将其带入   d=√(x1-x2)^2+(y1-y2)^2   得到   d=√(x1-x2)^2+[k(x1-x2)]^2   =√(1+k^2)(x1-x2)^2   =√(1+k^2)*√(x1-x2)^2   =√(1+k^2)*√(x1+x2)^2-4x1x2

6小时前

35
可能相似的问题

猜你喜欢的问题

热门问题推荐

Copyright © 2024 微短问答 All rights reserved. 粤ICP备2021119249号 站务邮箱 959505@qq.com