潶禮菔 4星
共回答了447个问题 评论
1.微分方程中的线性,指的是y及其导数v'都是一次方。
如:y'=2xy。
2.非线性,就是除了线性的。如:y'=2xy^2。
对于线性微分方程,其中只能出现函数本身,以及承数的任何阶次的导函数;函数本身跟所有的导承数之间除了加减之外,不可以有任何运算;函数本身跟本身、各阶导函数本身跟本身,都不可以有任何加减之外的运算;不允许对函数本身、各阶导函
数做任何形式的复合运算,例如:siny、cosy、 tany、lny、lgx、y2、y³。
若一个微分方程不符合上面的条件,就是非线性微分方程。
线性方程:在代数方程中,仅含未知数的一次幂的方程称为线性方程。这种方程的函数图象为一条直线,所以称为线性方程。可以理解为:即方程的最高次项是一次的,允许有0次项,但不能超过一次。比如ax+by+c=0,此处c为关于x或y的0次项。
微分方程:含有自变量、未知函数和未知函数的导数的方程称为微分方程。
22小时前
請和涐跳舞 5星
共回答了57个问题 评论
线性微分方程和非线性的区别:微分方程中的线性,指的是y及其导数y'都是一次方。非线性就是除了线性的,在代数方程中,仅含未知数的一次幂的方程称为线性方程。对于线性微分方程,其中只能出现函数本身,以及函数的任何阶次的导函数;函数本身跟所有的导函数之间除了加减之外,不可以有任何运算。
1微分方程介绍
微分方程,是指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。
微分方程是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。微分方程的应用十分广泛,可以解决许多与导数有关的问题。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。
18小时前
猜你喜欢的问题
5个月前1个回答
5个月前1个回答
5个月前1个回答
5个月前2个回答
5个月前1个回答
5个月前2个回答
热门问题推荐
3个月前1个回答
1个月前1个回答
1个月前2个回答
4个月前1个回答
1个月前1个回答
2个月前1个回答
2个月前2个回答
1个月前1个回答
3个月前1个回答