空间向量四点共面的证明

早早晚安安 1个月前 已收到2个回答 举报

我信过 3星

共回答了371个问题采纳率:96.6% 评论

这是空间向量

 中四点共面的推论:若AP=mAB+nAC显然ABCP四点共面,再引入点O(O是空间中任意一点)上式变为OP-OA=m(OB-OA)+n(OC-OA),移项得OP=(1-m-n)OA+mOB+nOC即右边三个系数之和为1。

四点共面

第一种方法:任取这4点中2点做一条直线,证明做出的2条直线相交、平行、或重合即可。

第二种方法:任取4点中3点做一个平面,再证明此平面经过这个点。

第三种方法:若其中有3点共线,则此4点一定共面。(过直线与直线外一点有且仅有一个平面)

如果已知4点坐标,可以用向量法、点到平面距离

 为0法证明4点共面。

19小时前

45

温柔醉乡 4星

共回答了436个问题 评论

你题目错了 应该是求证ABCP四点共面 用向量方法证明四点共面 应转化为不共线两向量共面的问题 1 4点构成2直线平行2 有3点共线3 4点构成的2个向量共线满足任一条件

17小时前

28
可能相似的问题

猜你喜欢的问题

热门问题推荐

Copyright © 2024 微短问答 All rights reserved. 粤ICP备2021119249号 站务邮箱 959505@qq.com