五步法推导圆的方程

桃子般念你 1个月前 已收到1个回答 举报

光棍卌緈 1星

共回答了125个问题采纳率:99.5% 评论

【1.例子】:求x+(m+1)y+m=0所过定点  

 解:可将原式化为x+y+m(y+1)=0   即为x+y=0;y+1=0  

 解得恒过点(1,-1)  

 由此我们理解到当除了x,y(为一次幂)还有一未知数m时,依然可求得一定点。  

 由此可联想:当有二次方程组x2+y2+D1x+E1y+F1=0与x2+y2+D2x+E2y+F2=0我们便能求出两定点。  

 过一已知圆与一直线的两个交点的圆系方程为:   x2+y2+D1x+E1y+F1+λ(Ax+By+C)=0   【理解2】:有二次方程组x2+y2+D1x+E1y+F1=0 ①式  

  x2+y2+D2x+E2y+F2=0 ②式   

①式+②式得x2+y2+D1x+E1y+F1+x2+y2+D2x+E2y+F2=0  

 此方程仅符合交点坐标(即带入交点后成立)   加入参数λ让方程代表恒过两点的所有圆。

8小时前

3
可能相似的问题

猜你喜欢的问题

Copyright © 2024 微短问答 All rights reserved. 粤ICP备2021119249号 站务邮箱 959505@qq.com