我爱犀利姐 3星
共回答了389个问题采纳率:99.5% 评论
是充分条件,不是充要条件。
简单的说,满足莱布尼兹判别法的交错级数,必然收敛,所以是充分条件。
但是不满足莱布尼兹判别法的交错级数,不一定就不收敛。所以不是必要条件。
扩展资料
根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。
韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间。
4小时前
猜你喜欢的问题
5个月前1个回答
5个月前1个回答
5个月前1个回答
5个月前2个回答
5个月前1个回答
5个月前2个回答
热门问题推荐
4个月前1个回答
1个月前1个回答
3个月前1个回答
1个月前1个回答
1个月前2个回答
2个月前2个回答
3个月前1个回答
1个月前1个回答
1个月前2个回答