回忆里的猪 2星
共回答了93个问题采纳率:90.4% 评论
∫lnxdx=(lnx-1)x+C。C为积分常数。
解答过程如下:
求lnx的原函数就是对lnx进行不定积分。
∫lnxdx
=xlnx-∫xdlnx
=xlnx-x+C
=(lnx-1)x+C
扩展资料:
分部积分:
(uv)'=u'v+uv'
得:u'v=(uv)'-uv'
两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx
即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式
也可简写为:∫ v du = uv - ∫ u dv
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
1小时前
猜你喜欢的问题
5个月前1个回答
5个月前1个回答
5个月前1个回答
5个月前2个回答
5个月前1个回答
5个月前2个回答
热门问题推荐
4个月前1个回答
3个月前1个回答
2个月前5个回答
4个月前3个回答
1个月前2个回答
2个月前1个回答
3个月前2个回答
1个月前1个回答
1个月前1个回答