爱恨恢恢 4星
共回答了430个问题 评论
根号内的数可以化成相同或相同则可以相加减,不同不能相加减。
如果根号里面的数相同就可以相加减,如果根号里面的数不相同就不可以相加减,能够化简到根号里面的数相同就可以相加减了。
举例如下:
(1)2√2 +3√2=5√2(根号里面的数都是2,可以相加)
(2)2√3 +3√2(根号里面的数一个是3,一个是2,不同不能相加)
(3)√5+√20=√5+2√5=3√5(根号内的数虽然不同,但是可以化成相同,可以相加)
(4)3√2-2√2=√2
(5)√20-√5=2√5-√5=√5
扩展资料:
一个数有多少个方根,这个问题既与数的所在范围有关,也与方根的次数有关。在实数范围内,任一实数的奇数次方根有且仅有一个,例如8的3次方根为2,-8的 3次方根为-2。
正实数的偶数次方根是两个互为相反数的数,例如16的4次方根为2和-2;负实数不存在偶数次方根;零的任何次方根都是零。在复数范围内,无论n是奇数或偶数,任一个非零的复数的n次方根都有n个。
当根式满足以下三个条件时,称为最简根式。
①被开方数的指数与根指数互质;
②被开方数不含分母,即被开方数中因数是整数,因式是整式;
③被开方数中不含开得尽方的因数或因式。
“有理化分母”,是指通过适当的变形划去代数式分母中根号的运算。
一般情况下,在进行根式运算及把一个根式化成最简根式时,都要将分母有理化,两个含有根式的代数式相乘,如果它们的积不含根号,我们就说这两个代数式互为有理化因式。
19小时前
猜你喜欢的问题
5个月前1个回答
5个月前1个回答
5个月前1个回答
5个月前2个回答
5个月前1个回答
5个月前2个回答