拖鞋控 1星
共回答了12个问题 评论
等比数列的常用性质:
(1)在等比数列{}中,若m+n=p+q=2r(m,n,p,q,r∈N*),则am·αη=ap·aq=a.
特别地,a1an=a2an-1=a3an-2=….
(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;
数列Sm,S2m-Sm,S3m-S2m,…仍是等比数列(此时q≠-1);an=amqn-m.
等比数列的特征:
(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非零常数.
(2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.
等比数列的前n项和Sn:
(1)等比数列的前n项和Sn是用错位相减法求得的,注意这种思想方法在数列求和中的运用。
(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误。
等比数列的判定方法:
(1)定义法:若an+1/an=q(q为非零常数,n∈N*)或an/an-1=q(q为非零常数且n≥2,n∈N*),则{an}是等比数列.
(2)等比中项法:若数列{an}中,an≠0且a=an·an+2(n∈N*),则数列{an}是等比数列.
(3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N*),则{an}是等比数列.
等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)可迎刃而解.
在使用等比数列的前n项和公式时,应根据公比q的情况进行分类讨论,切不可忽视q的取值而盲目用求和公式.
7小时前
猜你喜欢的问题
5个月前1个回答
5个月前1个回答
5个月前1个回答
5个月前2个回答
5个月前1个回答
5个月前2个回答
热门问题推荐
2个月前1个回答
3个月前1个回答
1个月前1个回答
3个月前3个回答
1个月前2个回答
4个月前3个回答
1个月前2个回答
3个月前2个回答
1个月前1个回答