诠释繁华 3星
共回答了354个问题采纳率:94.3% 评论
常见的无理数有哪三种形式
无理数也称为无限不循环小数,常见的无理数主要包括以下几种形式:
1)含π的数,如:2π等;
2)根式,如:√5等
3)函数式,如:lg2,sin1°等
有理数和无理数的区别
实数分为有理数和无理数。有理数和无理数主要区别有两点:
(1)有理数可分为整数(正整数、0、负整数)和分数(正分数、负分数)。把有理数和无理数都写成小数形式时,有理数能写成有限小数或无限循环小数,比如4=4.0;4/5=0.8等等;也可分为正有理数(正整数、正分数),0,负有理数(负整数、负分数)。
而无理数只能写成无限不循环小数,比如√2=1.4142...,π=3.1415926...,根据这一点,人们把无理数定义为无限不循环小数.
(2)所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比.因此,无理数也叫做非比数。
扩展资料:
如果正整数N不是完全平方数,那么
不是有理数(是无理数)。
21小时前
最后一号 2星
共回答了297个问题 评论
无理数常见三种形式如下:
1、开方开不尽的数2、与π有关的式子3、无限不循环小数无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数在位置数字系统中表示(例如,以十进制数字或任何其他自然基础表示)不会终止,也不会重复,即不包含数字的子序列。
例如,数字π的十进制表示从3.14159265358979开始,但没有有限数字的数字可以精确地表示π,也不重复。必须终止或重复的有理数字的十进制扩展的证据不同于终止或重复的十进制扩展必须是有理数的证据,尽管基本而不冗长,但两种证明都需要一些工作。
数学家通常不会把“终止或重复”作为有理数概念的定义。无理数也可以通过非终止的连续分数来处理。而有理数由所有分数,整数组成,总能写成整数、有限小数或无限循环小数,并且总能写成两整数之比,如21/7等。
19小时前
猜你喜欢的问题
5个月前1个回答
5个月前1个回答
5个月前1个回答
5个月前2个回答
5个月前1个回答
5个月前2个回答
热门问题推荐
3个月前3个回答
1个月前1个回答
3个月前5个回答
1个月前4个回答
1个月前2个回答
2个月前6个回答
4个月前1个回答
1个月前1个回答
3年前3个回答