三个基本不等式公式

纵言梦思 1个月前 已收到1个回答 举报

旧梦重演 3星

共回答了365个问题采纳率:94.3% 评论

分别是:

1、a^2+b^2≧2ab

对于任意的实数a,b都成立,当且仅当a=b时,等号成立。

证明的过程:因为(a-b)^2≧0,展开的a^2+b^2-2ab≧0,将2ab右移就得到了公式a^2+b^2≧2ab。

它的几何意义就是一个正方形的面积大于等于这个正方形内四个全等的直角三角形的面积和。

2、√ab≦(a+b)/2

这个不等式需要a,b均大于0,等式才成立,当且仅当a=b时等号成立。

证明过程:要证(a+b)/2≧√ab,只需要证a+b≧2√ab,只需证(√a-√b)^2≧0,显然(√a-√b)^2≧0是成立的。

它的几何意义是圆内的直径大于被弦截后得到直径的两部分的乘积的二倍。

3、b/a+a/b≧2

这个不等式的要求ab>0,当且仅当a=b时等号成立,也就是说a,b可以同时为正数,也可以同时为负数。

证明的过程:b/a+a/b=(a^2+b^2)/ab≧2,只需证a^2+b^2≧2ab即可。

16小时前

21
可能相似的问题

猜你喜欢的问题

热门问题推荐

Copyright © 2024 微短问答 All rights reserved. 粤ICP备2021119249号 站务邮箱 959505@qq.com