彩渱丅約啶 4星
共回答了488个问题采纳率:92.2% 评论
平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。
1.抛物线的简单几何性质
抛物线的范围,对称性、顶点、离心率统称为其简单几何性质,对于抛物线的四种不同形式的标准方程,它们有相同的顶点和离心率,而其范围和对称性,则与标准方程的形式有关,注意结合图形来得出。
2.由抛物线的定义可知,若直线1过抛物线 的焦点F且交抛物线于 两点,则焦半径 ,弦长,抛物线的焦点弦有很多重要性质,后面结合有关例题作详细研究。 3.圆锥曲线的统一定义
由椭圆、双曲线的第二定义及抛物线的定义可知,平面上动点M到定点F及到定直线1的距离之比等于常数e的点M的轨迹是圆锥曲线(这里点F不在直线1上,e>0,其中F是圆锥曲线的一个焦点,1是与F对应的准线,而e即为其离心率。) 当0<e<1时,轨迹是椭圆; 当e=1时,轨迹是抛物线; 当e>1时,轨迹是双曲线。
4.最值问题 设 是抛物线 上的动点,则点P到某定点或某定直线的距离的最大(小)值问题,可利用两点间的距离公式或点到直线的距离公式建立距离d关于 或 的函数,再求最值,而抛物线的范围则决定了函数的定义域。
1、通径是过焦点的弦中最短的弦
2、对y^2=2px来说,过焦点的弦与抛物线交于A(x1,y1)、B(x2,y2),则y1*y2=-p^2
3、对y^2=2px来说,过焦点F的弦与抛物线交于A(x1,y1)、B(x2,y2),(1/AF)+(1/BF)为定值
4、对y^2=2px来说,过焦点F的弦与抛物线交于A(x1,y1)、B(x2,y2),过A作AA1垂直于准线于A1,过B作BB1垂直于准线于B1,M为A1B1中点,则AM⊥MB
5、对y^2=2px来说,过焦点F的弦与抛物线交于A(x1,y1)、B(x2,y2),C在抛物线的准线上,且BC//x轴,则AC过原点
6、对y^2=2px来说,过焦点F的弦与抛物线交于A(x1,y1)、B(x2,y2),向量OA、OB的数量积为定值
7、光学性质:过焦点的光线被抛物线反射后为一组平行光线。
8、设C为抛物线上一点,过抛物线的焦点F作直线L交抛物线于A、B,AF、BF分别与准线交于P、Q,则PF⊥QF。(这个结论对椭圆、双曲线也成立。)
21小时前
猜你喜欢的问题
5个月前1个回答
5个月前1个回答
5个月前1个回答
5个月前2个回答
5个月前1个回答
5个月前2个回答
热门问题推荐
3个月前1个回答
4个月前3个回答
1个月前1个回答
1个月前1个回答
1个月前1个回答
1个月前2个回答
1个月前1个回答
1个月前1个回答
1个月前1个回答