情侣蒙天放 3星
共回答了302个问题 评论
1.同底数对数相加,底数不变,真数相乘。
2.同底数对数相减,底数不变,真数相除。
3.对数的运算法则是进行同底的对数运算的依据,对数的运算法则是等式两边都有意义的恒等式。
如果a>0,且a≠1,m>0,N>0,那么:
1.两个正数乘积的对数等于这两个基数相同的数的对数之和
2.两个正数的商的对数等于同底数被除数的对数和除数的对数之差
正幂的对数等于该幂的底数的对数乘以该幂的指数
4.如果公式中的幂指数对正数算术根有如下对数运算规则:正数算术根的对数等于根号的对数除以根指数
对数函数y=logax的定义域是{x0},但如果遇到对数复合函数定义域的求解,也要注意基数大于0不等于1。比如要求函数y=logx(2x-1)的定义域必须同时满足x0和x≠1和2x-10才能得到x1。
在实数领域,实数的公式没有根号。实数的公式只要大于零,如果有根号,就要求根号中的公式大于等于零(如果是负数,数值是虚数),基数大于零而不是1。
在常见的对数公式中,当a0或=1时,会有b的对应值,但根据对数的定义,log是以A为底的A的对数;如果a=1或0,那么a的对数可以等于所有的实数。(比如log11也可以等于2,3,4,5等。)
如果正实数不等于1,这个定义可以推广到一个域中的任意实数(见幂)。类似地,对数函数可以定义为任何正实数。对于每一个不等于1的正底数,都有一个对数函数和一个指数函数,它们都是倒数函数。
对数算法和公式
对数运算是一种特殊的运算方法,指的是积、商、幂、平方根的对数。具体来说,两个正数的乘积的对数等于两个同底数的对数之和,两个正数的商的对数等于同底数的被除数的对数减去除数的对数。
对数公式:a (log (a) (n)) = a T..对数公式是数学中常见的公式。若a x = n (A0,且a≠1),则x称为以a为底的N的对数,记为x=log(a)(N),其中a应写在log的右下方。其中a称为一个数的底数,n称为实数
9小时前
人双生 4星
共回答了42个问题 评论
当a>0且a≠1时,M>0,N>0,那么:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n∈R)
(4)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)
(5) a^(log(b)n)=n^(log(b)a) 证明:
设a=n^x 则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(6)对数恒等式:a^log(a)N=N;
log(a)a^b=b
(7)由幂的对数的运算性质可得(推导公式)
1.log(a)M^(1/n)=(1/n)log(a)M ,log(a)M^(-1/n)=(-1/n)log(a)M
2.log(a)M^(m/n)=(m/n)log(a)M ,log(a)M^(-m/n)=(-m/n)log(a)M
3.log(a^n)M^n=log(a)M ,log(a^n)M^m=(m/n)log(a)M
4.log(以 n次根号下的a 为底)(以 n次根号下的M 为真数)=log(a)M ,
log(以 n次根号下的a 为底)(以 m次根号下的M 为真数)=(m/n)log(a)M
5.log(a)b×log(b)c×log(c)a=1
对数与指数之间的关系
当a>0且a≠1时,a^x=N x=㏒(a)N
2小时前
猜你喜欢的问题
5个月前1个回答
5个月前1个回答
5个月前1个回答
5个月前2个回答
5个月前1个回答
5个月前2个回答
热门问题推荐
3个月前2个回答
3个月前4个回答
2个月前1个回答
2个月前1个回答
4个月前1个回答
1个月前1个回答
1个月前6个回答
4个月前2个回答
3个月前1个回答