裴若暄 4星
共回答了467个问题采纳率:97.2% 评论
1、性质不同
形象地说,拟合就是把平面上一系列的点,用一条光滑的曲线连接起来。因为这条曲线有无数种可能,从而有各种拟合方法。
回归,研究一组随机变量(Y1,Y2,Yi)和另一组(X1,X2,Xk)变量之间关系的统计分析方法。通常Y1,Y2,Yi是因变量,X1、X2,Xk是自变量。
2、方法不同
回归分析的主要内容有以下:从一组数据出发,确定某些变量之间的定量关系式;即建立数学模型并估计未知参数。通常用最小二乘法。检验这些关系式的可信任程度。
在多个自变量影响一个因变量的关系中,判断自变量的影响是否显著,并将影响显著的选入模型中,剔除不显著的变量。通常用逐步回归、向前回归和向后回归等方法。利用所求的关系式对某一过程进行预测或控制。
常用的拟合方法有如最小二乘曲线拟合法等,在MATLAB中也可以用polyfit来拟合多项式。拟合以及插值还有逼近是数值分析的三大基础工具,拟合为已知点列,从整体上靠近它们;插值为已知点列并且完全经过点列;逼近为已知曲线,或者点列,通过逼近使得构造的函数无限靠近它们。
3、应用不同
相关分析研究的是现象之间是否相关、相关的方向和密切程度,一般不区别自变量或因变量。而回归分析则要分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系。
比如说,从相关分析中我们可以得知“质量”和“用户满意度”变量密切相关,但是这两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定。
实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。
19小时前
猜你喜欢的问题
5个月前1个回答
5个月前1个回答
5个月前1个回答
5个月前2个回答
5个月前1个回答
5个月前2个回答
热门问题推荐
1个月前4个回答
4个月前2个回答
3个月前1个回答
3个月前2个回答
4个月前2个回答
3个月前2个回答
3个月前1个回答
3个月前2个回答
1个月前1个回答