結局狠悲 2星
共回答了252个问题 评论
在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。
在一元函数中,导数就是函数的变化率。对于二元函数的“变化率”,由于自变量多了一个,情况就要复杂的多。
在 xOy 平面内,当动点由 P(x0,y0) 沿不同方向变化时,函数 f(x,y) 的变化快慢一般来说是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 点处沿不同方向的变化率。
在这里我们只学习函数 f(x,y) 沿着平行于 x 轴和平行于 y 轴两个特殊方位变动时, f(x,y) 的变化率。
偏导数的表示符号为:∂。
偏导数反映的是函数沿坐标轴正方向的变化率。
16小时前
睁眼笑 2星
共回答了7个问题 评论
偏导数指的是因变量对于某一个自变量的变化率,可以看做是将其他自变量视作常数后,对这个一元函数求导,也就是图像在在某一平面上的变化率(这个平面是其他自变量为常数截出来的),通过梯度这个概念,我们能够展现出函数值随着每一个自变量的变化率,可以看到多元函数沿着某一方向的变化速率。
全微分可以理解为一元函数中微分的推广,意义也有相近的地方。在微积分发展的早期,函数的微分被视作是一个微小的增量,数学家们引入了无穷小的概念却不能在逻辑上达到完满的状态。在极限理论中,我们舍弃了无穷小或者说增量的概念,微分在极限理论下,实际上是一个函数,它是可微函数线性主要部分的近似。也即是每一个自变量的该变量趋于0时,函数值改变量的线性主要部分(也是最低阶的无穷小)。
函数可偏导指的是对于任意自变量均可偏导,这是可微的必要条件,但是如果偏导数连续,我们就可以得到函数必然可微的结论,这是可微的充分非必要条件。
13小时前
猜你喜欢的问题
5个月前1个回答
5个月前1个回答
5个月前1个回答
5个月前2个回答
5个月前1个回答
5个月前2个回答
热门问题推荐
1个月前5个回答
2个月前1个回答
3年前1个回答
3个月前4个回答
3个月前3个回答
3个月前2个回答
2个月前1个回答
1个月前3个回答
3个月前1个回答