欧拉方程的全部形式

或许佷嗳 4个月前 已收到2个回答 举报

圣光宠儿 1星

共回答了131个问题采纳率:96.2% 评论

欧拉方程:对无粘性流体微团应用牛顿第二定律得到的运动微分方程。欧拉方程是无粘性流体动力学中最重要的基本方程。应用十分广泛。1755年,瑞士数学家L.欧拉在《流体运动的一般原理》一书中首先提出这个方程。

表达式 ax²D²+bxD+c)y=f(x)

17小时前

19

倣芣芐 2星

共回答了260个问题 评论

(1)分式里的欧拉公式:   a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)   当r=0,1时式子的值为0   当r=2时值为1   当r=3时值为a+b+c   (2)复变函数论里的欧拉公式:   e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。   它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。   将公式里的x换成-x,得到:   e^-ix=cosx-isinx,然后采用两式相加减的方法得到:   sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.   这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作∏就得到:   e^i∏+1=0.   这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。   (3)三角形中的欧拉公式:   设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:   d^2=R^2-2Rr   (4)拓扑学里的欧拉公式:   V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。   如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。   X(P)叫做P的欧拉示性数,是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。   (5)初等数论里的欧拉公式:   欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。   欧拉证明了下面这个式子:   如果n的标准素因子分解式是p1^a1*p2^a2*……*pm^am,其中众pj(j=1,2,……,m)都是素数,而且两两不等。则有   φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm)   利用容斥原理可以证明它。

15小时前

50
可能相似的问题

猜你喜欢的问题

热门问题推荐

Copyright © 2024 微短问答 All rights reserved. 粤ICP备2021119249号 站务邮箱 959505@qq.com