一记耳光 1星
共回答了153个问题采纳率:95.1% 评论
1.提取公因式 这个是最基本的.就是有公因式就提出来。
2.完全平方 a^2+2ab+b^2=(a+b)^2 a^2-2ab+b^2=(a-b)^2 看到式字内有两个数平方就要注意下了,找找有没有两数积的两倍,有的话就按上面的公式进行。
3.平方差公式 a^2-b^2=(a+b)(a-b) 这个要熟记,因为在配完全平方时有可能会拆添项,如果前面是完全平方,后面又减一个数的话,就可以用平方差公式再进行分解。
4.十字相乘 x^2+(a+b)x+ab=(x+a)(x+b)
口诀;因式分解并不难,分解方法要记全,各项若有公因式,首先提取莫迟缓,各项若无公因式,套用公式来试验。如果是个二项式,平方差公式要领先,如果是个三项式,完全平方想周全,以上方法都不行,运用分组看一看,面对二次三项式,十字相乘求方便,能分解的再分解,不能分解是答案。
1小时前
思窖酒 1星
共回答了19个问题 评论
一、因式分解方法分类
(1)提公因式法
几个多项式的各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。
口诀:找准公因式,一次要提净;全家都搬走,留1把家守。要变号,变形看正负。
例如:
-am+bm+cm=-m(a-b-c);
a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。
注意:把2a2+1/2变成2(a2+1/4)不叫提公因式
(2)公式法
如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。
平方差公式:a2-b2=(a+b)(a-b);
完全平方公式:a2±2ab+b2=(a±b)2;
注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
立方和公式:a3+b3=(a+b)(a2-ab+b2);
立方差公式:a3-b3=(a-b)(a2+ab+b2);
完全立方公式:a3±3a2b+3ab2±b3=(a±b)3.
其他公式:(1)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
例如:a2+4ab+4b2=(a+2b)2。
(3)待定系数法
例如,将ax2+bx+c(a,b,c是常数,ab≠0)因式分解,可令ax2+bx+c=0,再解这个方程。如果方程无解,则原式无法因式分解;如果方程有两个相同的实数根(设为m),则原式可以分解为(x-m)2如果方程有两个不相等的实数根(分别设为m,n),则原式可以分解为(x-m)(x-n)。
更高次数的多项式亦可。
例:分解因式x2+3x-4。
答:设x2+3x-4=0
解方程得:x1=1 x2=-4
∴x2+3x-4因式分解为(x-1)(x+4)
(4)十字相乘法(数学术语)
十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
十字分解法能把某些二次三项式分解因式。对于形如ax²+bx+c=(a₁x+c₁)(a₂x+c₂)的整式来说,方法的关键是把二次项系数a分解成两个因数a₁,a₂的积a₁·a₂,把常数项c分解成两个因数c₁,c₂的积c₁·c₂,并使a₁c₂+a₂c₁正好等于一次项的系数b,那么可以直接写成结果:ax²+bx+c=(a₁x+c₁)(a₂x+c₂)。在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
二、分解因式技巧
1.分解因式与整式乘法是互为逆变形。
2.分解因式技巧掌握:
①等式左边必须是多项式;
②分解因式的结果必须是以乘积的形式表示;
③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;
④分解因式必须分解到每个多项式因式都不能再分解为止。
注意:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。
21小时前
猜你喜欢的问题
5个月前1个回答
5个月前1个回答
5个月前1个回答
5个月前2个回答
5个月前1个回答
5个月前2个回答
热门问题推荐
2个月前1个回答
4个月前3个回答
1个月前1个回答
2个月前1个回答
3个月前1个回答
3年前1个回答
4个月前2个回答
3个月前1个回答
1个月前1个回答