切点弦一般式方程推导过程

時間煮雨 2个月前 已收到1个回答 举报

懦弱者组曲 3星

共回答了322个问题采纳率:98.1% 评论

           过圆x²+y²=r²外一点P(x0,y0)作切线PA,PB, A(x1,y1),B(x2,y2)是切点,则过AB的直线xx0+yy0=r²,称切点弦方程。

证明: x²+y²=r²在点A,B的切线方程是xx1+yy1=r²,xx2+yy2=r²,

∵ 点P在两切线上, ∴ x0x1+y0y1=r²,x0x2+y0y2=r²,此二式表明点A,B的坐标适合直线方程xx0+yy0=r², 而过点A,B的直线是唯一的, ∴ 切点弦方程是xx0+yy0=r²。

说明:① 切点弦方程与圆x²+y²=r²上一点T(x0,y0)的切线方程相同。

② 过圆(x-a)²+(y-b)²=r²外一点P(x0,y0)作切线PA,PB,切点弦方程是(x-a)(x-x0)+(y-b)(y-y0)=r²。

21小时前

15
可能相似的问题

猜你喜欢的问题

热门问题推荐

Copyright © 2024 微短问答 All rights reserved. 粤ICP备2021119249号 站务邮箱 959505@qq.com